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Abstract. In this paper a method of "alternating corrections" is defined and 
analyzed for the numerical solution of the two-point boundary value problem 

Y= f(X, y) 
(0.1) y(O) = a 

y(l) = b. 

The case where the first derivative does not enter explicitly into the differential 
equation is chosen for simplicity of treatment. The alternating corrections method 
can easily be modified to treat the more general case. The function f(x, y) is as- 
sumed to have continuous second derivatives, but the differential equation may, 
of course, be non-linear. 

The method to be described is essentially a relaxation technique suitable for 
an automatic digital computer. The main feature of the method is that most of 
the "correcting" is done in the early stages of the computation, using a small 
number of points; thus a rough approximation to the solution is obtained quickly. 
This approximation can then be made more accurate in the later stages of the 
computation, as the number of points is increased. 

In Section 1 the method is described. Section 2 gives a rigorous truncation and 
stability analysis. Section 3 contains the proof of the convergence of the method 
giving an estimate of the rate of convergence, and in Section 4 some experimental 
results obtained on a digital computer are examined. 

1. Definition of the Method. In the following, we will denote by R a closed 
and bounded region of the x-y plane, in which we will assume both the solution to 
(0.1) and the approximations to that solution are known to lie, a priori. (See Collatz 
[1] p. 188 for a sufficient condition for the existence of the solution to this problem.) 
The function f(x, y) is assumed to be continuous and to have continuous first and 
second derivatives in R. The method to be discussed consists of two stages, as 
follows: 

A. Interpolation by Halves. Suppose the interval [0, 1] is partitioned into n 
equal parts by n + 1 equally spaced points, and an approximation yj to the solu- 
tion of (0.1) is defined at these points. We then refine the partition by subdividing 
[0, 1] into 2n equal parts, by 2n + 1 equally spaced points xj , j = 0 1, 2, ... 2n. 
Then the points of the original partition are given by the xj with even index. We 
then interpolate yj for the odd indices by using the explicit formula 

Yj 1) i = + + yj-1] - I [f(xi+1, Yj+i) + f(xj_1, Yj-D)], 4 4 

I =1. 3. 5,***.2n -1. 
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We shall abbreviate the right-hand side of (1.1) by the operator K(yj). Here, and 
in the following, h = Axj = 1/2n. 

B. Alternating Corrections. After step A, the values of yj with odd and even 
index are corrected alternately by using the same formula (1.1). Thus we have 

(1.2) y _ K(yjs) for j odd, 

(1.3) y + K(y ) for j even, j 3 O. j - 2n, 

(1.4) _ a 

(1.5) Y+1 
- b, 

where yj8 is the value of yj at the s-th iteration of step B. Then, as we shall show 
in Section 3, as s --> co, the values yj8 approach the solution of the system of differ- 
ence equations 

yj = K(yj) j = 1, 2,*,2n-1 

(1.6) yo = a 

Y2n = b. 

To start the computation, we usually will set n = 1, and yo = a, yi = b. Then 
step A interpolates a value at x = 2, and we renumber the values yo, I , y2 . Here 
step B is not needed, so we perform step A again, getting now five values. At this 
point we perform step B a number of times, until sufficient convergence to (1.6) 
for our purpose is obtained. We continue in this way, doubling the number of points 
with step A, then following this with a number of iterations of step B, until we have 
the desired accuracy. In Section 3 we will consider some estimate of the number of 
iterations of step B necessary for a given accuracy. 

2. Stability and Truncation Error. In this section we shall give a rigorous esti- 
mate of the truncation error in and stability of the difference equations (1.6). We 
note that the global truncation error is of order h-2 times the local truncation error, 
rather than h'1 times, as might be expected from a naive analysis. 

In the following, we let Y(x) be the exact solution to the differential equation 
(0.1). Let Yj = Y(xj), and let yj be the exact solution to the system of difference 
equations (1.6). Let the error ej = Yj- yj. Then, using the law of the mean, we 
obtain from (1.6) the system of difference equations 

e= [ej+l + e-11 - - [ej1+fy(xi+,n?j+1) 

(2.1) 
+ e1-i fy(x-11, 7 n-i)] + ti, j = 1,2, . . . 2n - 1, 

and 

(2.2) eo = e2. = 0, 

where qj is between Yj and y . Here the local truncation error 
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which is obtained from Taylor's formula. Rewriting (2.1) in matrix form, we have 

(2.3) Ae =-Fe +t 

where e is the column error vector whose transpose is (el, e2, * e2n-1), t the trun- 
cation error vector with transpose (tl, t2, * t2n-1), A is the second difference ma- 
trix 

F l-~~ 0 0 
2 1 

1 --1 0 ... 
A= 2 2 

LI -- 1 - ...j 0 2 1 2 

_ 

and F is the matrix 

F g12 0 0 

F- 9g2l 0 g23 0 
0 g32 0 g33 j 

where gij = fy(xi, rij), evaluated at the intermediate points given in (2.1). It is 

well known that the matrix A has eigenvectors vj with components sin 2n ) m = 1, 

2, ... 2n - 1, and corresponding eigenvaluesX = 1 - cos g j= 1,2; .. 2n - 1. 

Hence A-' exists, and its largest eigenvalue is (1 - cos Ir). Therefore, multiply- 

ing (2.3) by A', we have 

(2.4) ( + h A"'F) e = A-1t. 

Now we can prove two lemmas giving estimates of the error. 
LEMMA 1. Suppose fy > 0 in the region R. Then the components of the error vector 

e satisfy the inequality 

(2.5) I 

1<2max 

|maxI 

Yn 
i=1,2,***2n-1, 

where the extreme values are taken over the region R. 
Proof. Let the norm 11 e 11 = maxi I ej 1, and the subordinate matrix norm 

11 A = maxi Ej I aij 1. (Cf. Faddeeva [2] p. 58.) Rewriting (2.3) in the form 

(2.6) (A + h F) e = (I -B) e = t, 

we have defined the matrix B = I - A - 4 F. But since Af, > 0, we can conclude 
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that 1j B 11 < 1 - Min f, < 1, where the minimum is taken over the closed 

region R. Hence the series I + B + B2 + ... converges to (I -B) 

and I! (I- B)' fl < (1- B I)-'. Also we note that 1t 1 -< 
5 

max | tv 1. 

Using these estimates and (2.6) gives us 

e t < 5h4 2 e 
_1 I IB 1I = 24 max I yv'~i 

from which inequality (2.55) follows. 
The second lemma takes care of the case when f, is negative or zero in R. Here 

we estimate the root-mean- square of the error. 
LEMMA 2. Suppose I yI < 7r2 in the region R. Then, for h sufficiently small, the 

error vector satisfies 

11e J ~ 5 max Iyiv~ (2.7) <II 5h2(') (2.) 
- 1 C= 127r2(1 _ 7r-2max If ) + (h). 

Proof. In this proof, we use the euclidean norm, and the subordinate matrix 
norm IIAII equal to the square root of the largest eigenvalue of AAT (Faddeeva 
[2] p. 59). We see by inspection that FFT has a maximum row sum not exceeding 
max 4fY2. But we know that its largest eigenvalue does not exceed this maximum 
row sum. This gives the estimate 

(2.8) IlFfl < 2 max f f I. 
Also, from the eigenvalues of the symmetric matrix A we obtain 

(2.9) 11A-'II = (1 - cos rh)-1. 

Using this together with (2.8) we get 
(2.10) |] h 2 A-1F ?| < h2max I fy 

4 2(1 - cos .7rh) 

But for small h, we have the estimate 

(2.11) (1 - cos-7rh) = __ + 0(h 2 
7 + 0(h2) 

hence, for h sufficiently small, 

(2.12) 4- A'F 2+0(h2)) max f I < 1, 

< 2 ~~~~~~~5 since max I fy < 72. Also, with this norm, 11 t I 25 Max I y nI + 1. 

Therefore, by the same reasoning as in Lemma 1, (I + 4- A'F) exists, and its 

norm does not exceed (1 - A'F ). Putting these estimates into (2.4), we 

get (2.7), proving the lemma. 
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It should be noted that the restriction -f, < r2 is a natural one, as can be 
seen from an examination of the boundary value problem 

yY = -Ky 

(2.13) y(O) = 0 

y(l) = 1. 

Here, of course, the solution does not exist when K = -f = r2, as we have an 
eigenvalue problem. 

3. Convergence of the Alternating Corrections Method. In this section we shall 
give a proof of the convergence of the alternating corrections method (method B 
of Section 1). Following the notation of Section 1, we shall denote the value of 
the approximation at the point xj for the s-th iteration by yj8, and the exact solu- 
tion to the difference equations (1.6) by yj . Then we define the error ej9 = yj - yji. 
Then we have, for j odd, 

(3.1) E,+ E+ + -E [I+1 fy(Xj+1) + E8 fy(Xj1l ntj-1)] 2 4~ ~~- fli i) 

where 1j is between yj and yj8 for each j. For j even, j 5 0, j $ 2n, 

8+1 1 8+1 8+1 h 8+1 + 
(3.2) E' -2 [Ei+' + ej-'] - -[Ef.jlf +l x.+j +Ei?) + Ejilfy(XJ-., 7i-,)I 4 

and for the endpoints, 

(3.3) C0= e2n = 0. 

Now we define , = max 1 - A- , the maximum being taken over the region 

R. Then for j odd, we have 

(3.4) I 4'J~+' I < ti41 EjC1 I + I EJ-. 1I 

and for j even, j # 0, j $ 2n 

(3.5) E +l 
1 < 'A[I E+l I + I Eji1 H]. 

To estimate the error cj', we majorize it with a quantity Ej8, defined recursively 
as follows: 

(3.6) E= 0 j = . 1 * n. 

(3.7) E -+' = 1A2[Ej + 2Ejs + Ej+1] j = 1, 2, * * - 1. 

(3.8) E8+= E8+1 = 0. 
2n 

In this section we will use the euclidean norms 1 E1 2 = E 2 and 
0 

E 112 = Ej . 0 

Lemma 3 gives an estimate for E1c-1 in terms of 11 E 1I 
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LEMMA 3. For every s _ 1, 

(3.9) Hf2 < (1 + ?2)1 E 11 2. 

Proof. First the inequality f2j ? Ej8 is established by induction on s. For 
s = 0, the inequality holds by definition. Assuming the inequality is true for s, the 
proof for s + 1 follows from the inequalities 

It 8+1 < [I E2j+ 1 + I2 K4+. H 
< -2 2j-2+ 2 E2j,+ E2j?2 H 

2[<' +I 42j+ 1 

Now for 2j + 1 we have the inequality 

E2j+j I <- 2[1 E2j I + I E2j+2 1] 

< ,4[Ej3 + Ej+?]. 

Combining these, and using the triangle inequality, we obtain 
n n-1 

fes E 
2 < 

E I Ejs 12 + !2 E I Ej8 + E 8 12 

o 4 o 
(3.10) 

< (1 + A2) JJES 112 

which proves Lemma 3. 
We now expand Ej8 in a finite Fourier sine series, with Fourier coefficients given 

by 

2 n- 

(3.11) FMs= - 1Ej8sin m= 1,2, n-i. 
n j=i n 

Then we have the expansion 
n-1 

(3.12) Ejs= Fm8 sinmJ7 , =0,1, *, n. 
m=1 fl 

Substitution of (3.12) into (3.7) now yields the recursion relation 

(3.13) F8+ = 2 1 + COS --) FMi 

From (3.13) we then obtain the estimate 

(3.14) lEs 1H <-[2(1? cos )1SIo EO 

and applying Lemma 3, we have the final estimate 

(3.15) || es Hl _ (1 + ,t2)1/2 [1a2 (1 + COS fl 1 f1 

Therefore we have proved 

LEMMA 4. If -1 < P = 1 (1 + COS < 1, the alternating corrections method 
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will converge geometrically to the solution of the difference equations (1.6), with con- 
vergence factor p. 

For small h, we note that 

(3.16) p = max [1- h(fY + 7r2) + 0(h 4)] 

and again we have the natural restriction for convergence mentioned at the end 
of Section 2. 

The number of iterations needed at each stage in the method can now be esti- 
mated as follows. Clearly, the convergence factor increases as h -* 0, hence the 
convergence is much faster for large values of h. On the other hand, it would be 
futile to carry the iterations so far that 11 e 6i is much smaller than 11 e 11, as we are 
interested not in the solution of (1.6), but of (0.1). Hence a useful compromise 
might be to iterate the alternating corrections until || 611 and 11 e 11 are approxi- 
mately equal, then to interpolate, and start again with interval h/2. If this scheme 
is followed, we would want to cut the error e by a factor of about 4 by iteration 
after each interpolation, since the error 11 e 11 is of order h2. Then we have p8 = 

which gives us the approximation 

_ log 4 log 4 
logp h2_(fY+72) 

This shows that it would take about four times as many iterations for the next 
stage, after interpolation by halves. Since there are about twice as many points, 
the total amount of computational work is multiplied by eight at each succeeding 
stage. Clearly this- process cannot be used for very many stages. 

In practice h will probably not be made less than 2-8 or 2-9, and if more ac- 
curacy is needed, a more sophisticated set of difference equations than .(1.6) would 
be used. The alternating corrections method, however, is excellent for obtaining 

TABLE 1 

Is error at x = i number of iterations 

2-1 .052083 0 
2-2 .013021 27 
2-3 ..003255 100 
2-4 .000814 329 
2-5 .000203 1026 
2-6 .000051 2948 

TABLE 2 

Is error at x = i number of iterations 

2-1 .065074 0 
2-2 .013935 23 
2-3 .003366 82 
2-4 .000834 269 
2-5 .000208 831 
2-6 .000052 2339 
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a good approximation quickly, which could be used as a first guess in a more com- 
plicated relaxation scheme. 

4. Some Experimental Results. In this section we shall discuss the results of 
two problems which were computed using the alternating corrections method. The 
computation was done using the Univac Scientific 1103 computer at the University 
of Minnesota Scientific Computing Laboratory. 

The first problem was the linear equation 

ye = 2X2 

(4.1) y(0) = 0 

y(l) = 1. 

In Table 1 the results of this computation are summarized. 
Formula (2.7) with f, = 0, y"' = 4 gives the r.m.s. error < .16887h2, in good 

agreement with the error at x = . 
For each value of h, stage B was iterated until there was no change larger than 

2-29 in any yj3. The number of iterations necessary to accomplish this is also given 
in Table 1. If we use the estimate 11 2 11 = .16887h2, we get the relation 

.16887h2ps = 2_29 

from which we get the approximation 

s h-2(1.856 + .2026 log h), 

which agrees well with the number of iterations actually performed. 
The second problem tried was the nonlinear equation 

-it = 2y2 

(4.2) y(0) = 0 

y(l) = 1 

Table 2 gives a summary of this computation. 
The fact that the global truncation error is of order h2 is again displayed in 

Table 2. The number of iterations necessary at each stage was governed by the 
same scheme as in problem 1, but with the criterion 2-31 instead of 229. 

Finally, it may be noted that the approximations generated by the alternating 
corrections method could be improved greatly by a "deferred approach to the 
limit", using the approximations obtained from the last two values of h computed. 

The author wishes to thank Mr. James Rude for his help in preparing the 1103 
coding. 

University of Minnesota 
Minneapolis, Minnesota 

1. L. COLLATZ, Numerische Behandlung von Differentialgleichungen, 2nd Ed., Springer- 
Verlag, Berlin, 1955. 

2. V. N. FADDEEVA, Computational Methods of Linear Algebra, Dover Publications, New 
York, 1959. 


